

CNN Training HW Architecture Design Using C2RTL SoC Synthesis/Verification Framework Tsuyoshi Isshiki

Dept. of Communications and Computer Engineering Tokyo Institute of Technology

> MPSoC [•]19 July 11th, 2019

Deep Learning Hardware Frameworks

- Inference hardware frameworks : many solutions . . .
 - CPU/GPU : Rich tools (Tensorflow, etc), easy setup
 - FPGA : Binary/Ternary Networks, xDNN/ML-Suite (Xilinx)
 - Custom HW : Servers (TPU), edge devices (chips, IPs)
- Training hardware frameworks : limited to CPU/GPU . . .
 - Floating-point arithmetics (FP32, FP16) → difficult to implement high density/low latency FPUs on FPGA
 - Evolving DNN topologies and use-cases → DNN Training workload demands will continue to increase dramatically
- \rightarrow Opportunities for FPGAs on Deep Learning <u>TRAINING</u>?
- → Deep Learning Training algorithm(C++) & HW design using C2RTL Design Framework

Super-Resolution CNN (SRCNN)

MACs per pixel (Inference) = 8,032 MACs = 16,064 Ops # operations per sec @150MHz = 2.4 TeraOPs/sec

"Image super-resolution using deep convolutional networks", Dong et al (2016)

SRCNN C++ Resource Description (Inference ONLY)

SRCNN Top C++ Dataflow Description

CONV-Core C++ Dataflow Description

SRCNN Inference Hardware Synthesis Results

7.65 Million Gates (est.) \rightarrow 951 gates per MAC unit

Time Multiplexing CNN Hardware

Numerical Issues in Deep Learning Training

- Inference : integer (fixed point) operations are sufficient
 - Narrow dynamic range : FW propagation signals, weights
 - Ideal for FPGAs (INT8 typical in classification problems)
 - SRCNN is more sensitive to bit-width (9b x 11b required)
- Training : need floating point operations
 - − Large (unpredictable) dynamic ranges : FW/BW prop. signals, weights, gradients → NEXT PAGE
 - Fixed point implementation requires larger bit-widths and manual setting of decimal positions and scaling factors
 - On FPGA, standard FPU implementation is very inefficient compared to Fixed Point [1]: 5X DSPs, 11X LUTs, 7.5X latency
- Approach : <u>shared exponent</u> on group of fixed-point data
 - "Block Floating Point" (BFP) for FFT [2]
 - "Dynamic Fixed Point" for Deep Neural Network Training [3]

9

Reduce Power and Cost by Converting from Floating Point to Fixed Point (Xilinx WP, 2017)
A Block Floating Point Implementation for an N-Point FFT on the TMS320C55x DSP (TI WP, 2003)
Training Deep Neural Networks with Low Precision Multiplications (Courbariaux/David, ICLR 2015)

Dynamic Ranges of Training Parameters/Signals

Floating Point vs. Dynamic Fixed Point (DFX)

• Floating point (FP) : exponent on individual fraction value

 $V = [2^{e_0} f_0 \ 2^{e_1} f_1 \cdots 2^{e_{N-1}} f_{N-1}] : \text{Floating point vector}$ $V_a \cdot V_b = \sum_{k=0}^{N-1} 2^{(ea_k + eb_k)} \cdot fa_k \cdot fb_k \quad \begin{array}{c} \text{Floating-Point} \\ accumulations \\ are EXPENSIVE! \end{array}$

• Dynamic fixed point (DFX) : common exponent on vector of fractions

 $V = 2^{e} \cdot [f_{0} f_{1} \cdots f_{N-1}] : \text{Dynamic fixed point (DFX) vector}$ $V_{a} \cdot V_{b} = 2^{(ea+eb)} \cdot \sum_{k=0}^{N-1} fa_{k} \cdot fb_{k} \qquad \begin{array}{c} \text{Can use INTEGER MAC} \\ \text{(Multiply-Accumulate)} \\ \text{operations!!} \end{array}$

CNN Training DFX Implementation

- DFX data format : shared exponent at each CONV layer
 - FW/BW propagation signals, CONV weight/bias
 - Signal saturation in case of fraction overflow
- DFX exponent adjustment scheme
 - DFX exponents remains FIXED during each batch
 - DFX exponent adjustment during weight-update :
 - **INC DFX-exponent if overflow occurred**
 - DEC DFX-exponent if Shift-Left does not overflow
- Gradients : Floating point format
 - Wide dynamic range of accumulated gradients
 - \rightarrow Customized normalization scheme for area efficiency

All DFX operations and custom FP operations designed on C++ and converted to RTL via C2RTL framework

SRCNN Training DFX Accuracy vs. FP32

SRCNN (Training) RTL Synthesis Results

Design	# filters			# MAC units	Gates]
(SRCNN-mini1)	9x9	1x1	5x5 # WAC diffes		Jales	
Inference	16	128	8	1,624 (Fixed-Point)	1.382 M	
Training	16	128	8	1,624 * 2 <mark>(DFX)</mark> + 1,624 (FP)	5.474 M	x3.9

Verified on Xilinx ZU9EG @ 87MHz (ZU102 board)

9x9 1x1 5x5		5x5	# MAC units	Gates
6	6 24 4		610 * 2 (DFX)+ 610 (FP)	2.088 M

 SRCNN Training HW	Clock Freq.	Exe. time	Power
GPU (GTX1080i)	1.6GHz	884 sec (x6.75)	58W (x40.0)
C2RTL/FPGA	50MHz (max:87MHz)	131 sec (x1.00)	1.45W (x1.0)
C2RTL/CPU	3.6GHz	19,467 sec (x148.60)	-

Summary

- Deep Learning Training hardware : limited to CPU/GPU
 - Floating-point arithmetics (FP32, FP16) → difficult to implement high density/low latency FPUs on FPGA
 - Evolving DNN topologies and use-cases → DNN Training workload demands will continue to increase dramatically
- Dynamic Fixed Point (DFX) for FPGA-based CNN Training
 - − Shared exponent on vector of fraction data → vector inner-product computation on INTEGER FORMAT!
 - Comparable training accuracy vs. FP32 training
 - 6.75X faster, 40X power efficient than GPU
- Future works
 - Automatic Training HW generation from DL frameworks using C2RTL framework for CNN/RNN applications
 - Design space exploration of CNN/RNN inference engines

Thank You for Your Attention!

Tsuyoshi Isshiki

isshiki@ict.e.titech.ac.jp Dept. Communications and Computer Engineering **Tokyo Institute of Technology**